
S I N G U L A R I T Y

Microsoft Confidential 1 20-Oct-2008

Building and Running Singularity RDK 2.0

Getting Started

Building and running Singularity is quite simple. The Singularity source code includes all tools

needed to build and boot Singularity. Because Singularity will run in a Virtual PC, creating a test

deployment of Singularity is, hopefully, trivial.

This document describes the steps to build the Singularity source code and boot your Singularity

image into Virtual PC or real hardware. The following sections describe each step.

1. Resources

The Singularity source code contains all of the sources and tools required to build and boot

Singularity. However, the Singularity source code does not contain a source code editor; you must

provide these tools yourself. You‟ll need approximately 250MB of free disk space to install and

1.5GB of free disk space to build Singularity plus all the applications and 512MB of available RAM.

Depending on your institution‟s network policy, you may need to get an IPSec Boundary Exception

from your Network IT team for your PXE boot server. Please ask them for more information.

If you have a question about building or running Singularity, please ask on the Singularity CodePlex

discussion forum at http://www.codeplex.com/singularity/Thread/List.aspx.

Visit http://research.microsoft.com/os/singularity for published research material on Singularity.

1.1. Install Debugging Tools for Windows

Singularity supports kernel mode debugging. You should install the latest version of the Debugging

Tools for Windows from http://www.microsoft.com/whdc/devtools/debugging/default.mspx

1.2. Install .NET Framework Version 2.0 or higher

The Singularity RDK 2.0 build requires the .NET Framework Version 2.0 or higher (previous

versions required only version 1.1). The version identifier of the .NET Framework version 2.0 is

“v2.0.50727”. If you‟re up to date with Windows Update, you should have it installed. To install it

manually, see one of:

 http://www.microsoft.com/downloads/details.aspx?FamilyID=ab99342f-5d1a-413d-8319-

81da479ab0d7&displaylang=en (.NET Framework Version 3.5 Service Pack 1)

 http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-

8EDD-AAB15C5E04F5&displaylang=en (.NET Framework Version 2.0)

1.3. Create a Singularity Build Environment

In the root directory where you installed the RDK is a script configure.cmd. Run the script to

create a desktop shortcut to launch a shell with the configuration required to build Singularity. The

shell script base\setenv.cmd configures the build environment for Singularity. You can also

execute it by hand from a command shell:

http://www.codeplex.com/singularity/Thread/List.aspx
http://research.microsoft.com/os/singularity
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=ab99342f-5d1a-413d-8319-81da479ab0d7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=ab99342f-5d1a-413d-8319-81da479ab0d7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en

S I N G U L A R I T Y

Microsoft Confidential 2 20-Oct-2008

%ComSpec% /k base\setenv.cmd

Browse the Source

The Singularity depot currently consists of the following directory trees:

 base\Applications – Sources for Singularity user applications, programs with a

user interface that run in their own process.

 base\Boot – Sources for the bootstrap loaders.

 base\Build – The build environment includes the 16-bit C++ compiler for 16-bit

bootstrap loader, the 32-bit C++ compiler for 32-bit bootstrap loader and native

components of the HAL, C# compiler, Bartok MSIL to x86 compiler, linkers, and

Singularity specific build and deploy tools such as the network boot server,

bootd.exe.

 base\Contracts – Sources for contracts on channels.

 base\Distro – Target for a full Singularity build. The build process will create a

tree in this directory for the current configuration, and populate it with all executable

code needed to boot and run Singularity.

 base\Drivers – Sources for the Singularity device drivers.

 base\Interfaces – Interface definitions needed to build Singularity.

 base\Kernel – Sources for the Singularity kernel including the components of the

CLR base class libraries included in Singularity and unmanaged (native) code in

base\Kernel\Native.

 base\Libraries – Sources for the Singularity libraries, code that gets loaded into

multiple processes.

 base\Services – Sources for Singularity services, programs that run in their own

process and provide services to other programs rather than provide a user interface.

 base\Windows – Sources for build and bootstrapping tools that run on Windows,

including the network boot server in base\Windows\bootd.

 docs – Documents and presentations related to Singularity.

S I N G U L A R I T Y

Microsoft Confidential 3 20-Oct-2008

2. The Singularity Build

2.1. Running a Build

The Singularity RDK uses the MSBuild tool to define build targets. Information on MSBuild may be

found at http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx.

Start the RDK command-shell shortcut and then type:

msb Distro\Tiny.proj

„msb‟ will build the kernel, volume manager, and shell. The complete list of targets:

 Tiny – Kernel, volume manager, shell.

 Small – „Tiny‟ plus network stack, disk drivers

 BVT – verification suite

 SPECweb99 – SPECweb99 suite and benchmarks

 World – Everything

All the build targets accept a /t:Clean switch that removes all the built files. For example:

msb /t:Clean Distro\Tiny.proj

2.2. The Build Process

The complete build process first builds any custom Singularity tools that run on Windows. In most

cases, copies of these tools are already checked into the base\Build directory. They are built on

developers machines to prevent inadvertent build breaks.

The build process compiles C# module interface definitions (.csi files) into interface load libraries

(.ILL files) using the interface compiler (csic.exe). Interface load libraries (.ILL files) are

minimal MSIL assemblies that can be referenced when compiling C# sources. At run time, the

interface load libraries are replaced with implementation code complete MSIL assemblies (.DLL

files). Interface load libraries are a deterministic mechanism for dealing with circular dependencies

between MSIL assemblies.

The build process compiles the C# portions of the Singularity kernel into an MSIL assembly

(kernel.exe). It then builds other C# sources that are linked with the kernel.

After all C# sources have compiled, the build process invokes the Bartok compiler to create native

x86 object files from the MSIL assemblies. Bartok also generates native header files for use by C++

(halclass.h) and x86 assembler (halclass.inc) portions of the kernel.

After the native headers are generated, the build process compiles and links Windows tools that

require those headers, such as the singdbg.dll extension for the Debugging Tools for Windows

(windbg.exe).

The build process then compiles and links the 16-bit and 32-bit bootstrap loaders. The PE binary for

the 32-bit bootstrap loader is stripped of headers and converted to a flat text file that is assembled as a

http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx

S I N G U L A R I T Y

Microsoft Confidential 4 20-Oct-2008

data blob into the 16-bit bootstrap loader. The 16-bit bootstrap loader consists of both x86 assembly

and 16-bit C++.

Finally, the C++ and 32-bit C++ assembly code portions of the kernel (in Kernel/Native) are

compiled. Object files generated by Bartok are linked with the x86 portions of the kernel and a time

stamp to produce a PE binary, system.exe. The PE binary is converted into a network bootable

image as a minidump file, kernel.dmp.

Singularity uses the Windows minidump format for its boot image. You can examine the minidump

by typing windbg -z Image\obj\kernel.dmp on the command-line. If you open the call

stack window in windbg, you will see that the image is configured to start at the function Hal()

from Hal\hal.cpp. Because symbolic information is annotated in the minidump, windbg can be

used to explore the initial system image and to map from memory addresses in the Singularity log to

source code via the ln command.

Output from the build process is stored in obj subdirectories within each source directory. The

base\Kernel\obj directory contains the final bootstrap loader, Singldr, and bootable image,

kernel.dmp.

3. The Singularity Boot Process

When booting, the client screen will show the progress of the boot process. Boot typically takes less

than 1 minute from the time the client PC is powered on.

3.1. Supported Boot Devices

3.1.1. Network Boot

The preferred method of booting Singularity is through the network, via the PXE boot process. When

booting via this method, the 16-bit Boot Loader is started directly.

3.1.2. Cd-Rom, FAT Hard Disk, and USB Boot

Booting from a FAT or Joliet file system requires a 512-byte boot sector installed at the beginning of

the boot record for a given device. The role of this boot sector is to locate, load, and execute the 16-bit

Boot Loader.

S I N G U L A R I T Y

Microsoft Confidential 5 20-Oct-2008

4. Configuring and Running Singularity on Virtual PC

The build process is optimized for network-booting Singularity on Virtual PC. For information on

booting Virtual PC on real hardware, consult Section 4.

4.1. Configure a Virtual PC

4.1.1. Install Virtual PC

4.1.2. Install the Loopback Network Adapter on the Host OS

WindowsXP – The Virtual PC help explains how to install the loopback network adapter under the

index section “Loopback Adapter, installing on Windows XP” in the Virtual PC help. The

instructions are repeated here for your convenience:

1. To perform this procedure, you must be an Administrator or a member of the Administrators
group. As a security best practice, consider using Run as to run this command.

2. On the host operating system, click Start, point to Settings, click Control Panel, and then
double-click Add Hardware.

3. In the Add Hardware dialog box, click Next.
4. When the Is the hardware connected? dialog box appears, click Yes, I have already

connected the hardware, and then click Next.
5. In the Installed hardware list, click Add a new hardware device and then click Next.
6. In the What do you want the wizard to do? list, click Install the hardware that I manually

select from a list (Advanced), and then click Next.
7. In the Common hardware types list, click Network adapters, and then click Next.
8. In Manufacturer list, click Microsoft
9. In the Network Adapter list, click Microsoft Loopback Adapter, and then click Next twice.
10. If a message about driver signing appears, click Continue Anyway.
11. In the Completing the Add Hardware Wizard dialog box, click Finish.

Vista – Although similar to the above, finding the Add Hardware Wizard is a little different.

On the host operating system, click Start, click Control Panel, click Device Manager, in the

Device Manager dialog right click on the computer name and choose Add legacy hardware.

Continue with step 6 above.

4.1.3. Configure the Host OS Loopback Adapter

Configure the host operating system side of the loopback adapter interface by doing the following:

WindowsXP

1. Navigate to Network Connections on the host operating system.
a. One way to do this is by right-clicking My Network Places, and then click Properties.
b. Another is through Start, Settings, (Control Panel)

2. In the Network Connections window, find the loop back adapter. The loop back adapter will
have an auto-generated connection name like Local Connection 2 and a device name of
Microsoft Loopback Adapter. Right click on this network connection, select Rename and enter

Loopback.

3. Right click on it again and select Properties.
4. On the General tab of the Properties dialog box, in the This connection uses the following

items list, select Internet Protocol (TCP/IP), and then click Properties. Be careful not to
change the check-boxes as you don’t want to disable any of the protocols.

S I N G U L A R I T Y

Microsoft Confidential 6 20-Oct-2008

5. Select Use the following IP address, enter 10.99.99.1 for the IP address and

255.255.255.0 for the Subnet mask. Leave the Default Gateway and DNS server fields

blank then click OK.
6. Click the Advanced tab of the Properties dialog box, then click the Settings… button in the

Windows Firewall box. The Windows Firewall dialog box will appear. Select the Exceptions
tab.

a. Choose the Add Port… button add UDP port 67 for DHCP and UDP port 69 for TFTP.
DHCP and TFTP are protocols used in the network boot of Singularity.

b. OR, Choose Add program… and point it at <RDK Install Dir>\Microsoft

Research\Singularity RDK\base\build\bootd.exe

7. In the Properties dialog box, click Close.

Vista

1. Navigate to Network Connections on the host operating system. One way to do this is

through Start, Control Panel, Network and Internet, Network and Sharing Center,

Manage network connections (in the left panel).

2. The rest of the steps are the same as above except as noted below…

3. Same.

4. On the Networking tab, choose Properties of Internet Protocol Version 4 (TCP/IPv4).

5. Same

6. Returning back to the Network and Internet dialogue in the Control Panel choose

Allow a program through Windows Firewall under the section Windows Firewall.

The Windows Firewall dialog box will appear at the Exceptions tab.

a. Follow 6a or 6b above.

4.1.4. Create a Virtual PC

You need to create a virtual machine to run Singularity. To do this, simply copy the file

base\boot\pxe.vmc to base\pxe.vmc.

4.2. Booting Singularity on Virtual PC

To set up a virtual PC for use in working with the RDK, copy the Virtual PC configuration file from

%SINGULARITY_ROOT%\boot\pxe.vmc to %SINGULARITY_ROOT% and give it a new name,

e.g.:

 cd %SINGULARITY_ROOT%

 copy boot\pxe.vmc myPC.vmc

After building the RDK by running:

 Msb Distros\<distroFile>

The Virtual PC can be started to boot from an ISO image generated during the build using:

 boottest.cmd myPC.vmc.

S I N G U L A R I T Y

Microsoft Confidential 7 20-Oct-2008

The debugger can be started to connect to the virtual PC using:

 dbg.cmd /pipe

In general, the debugger wants to be started before the Virtual PC to ensure the debugger so the OS

can detect the debugger, otherwise it may fail to recognize the debugger later. This can be performed

by combining the two commands online the command-line:

 dbg.cmd /pipe & boottest.cmd myPC.vmc

The Virtual PC can be made to network boot by adding a /net argument to the command arguments:

 boottest.cmd /net myPC.vmc

but network booting is significantly slower than booting from an ISO image because the network

boot loader TFTPs each file in the distribution.

4.3. Booting on Virtual PC under Vista

Vista seems to honor domain IPSec for the loopback adapter, whereas XP didn‟t. Thus, to boot

Singularity on VirtualPC under Vista, the machine must have the IPSec boundary exception (see

Section 5.2).

Then follow steps above.

4.4. Bootd

Singularity boots over a network using the PXE family of protocols. The DHCP protocol is used to

get a network address. The PXE extensions to DHCP are use to determine the correct image to load.

The TFTP protocol is used to retrieve the OS image. The Singularity build environment includes a

simple network boot server which provides all of these protocols. The DHCP protocol can be

disabled when run on a network that already provides DHCP service. Note that in the case where the

boot server communicates through a loopback network to a Virtual PC then the DHCP protocol

should be enabled in bootd.exe.

Unlike other boot servers, bootd.exe does not operate in promiscuous mode; it only responds to

boot requests from MAC addresses listed on the command line. As such, bootd.exe is safe to use

on shared public networks. Bootd.exe can also be configured either to hand out IP addresses via

the DHCP protocol, as it does when booting Virtual PC clients over the Loopback Adapter, or to

ignore DHCP requests so clients receive a DHCP address for another DHCP server, such as a

corporate DHCP server. For more information on configuring the bootd.exe, type “bootd.exe

/?” at the command prompt.

When started, bootd.exe displays the registered MAC addresses and bound network interfaces:

S I N G U L A R I T Y

Microsoft Confidential 8 20-Oct-2008

As the client boots, bootd.exe displays the DHCP/PXE requests followed by the TFTP requests:

You might notice that the last TFTP request is aborted. This is the mechanism by which the

Singularity bootstrap loader indicates that it has completed downloading files from bootd.exe.

When given the /tftp /e option, bootd.exe uses this abort to determine that a client has been

booted successfully and exits. If the /e option is not provided, bootd.exe will continue to serve

boot requests until terminated with a Ctrl-C.

S I N G U L A R I T Y

Microsoft Confidential 9 20-Oct-2008

5. Configuring and Running Singularity on a PC

5.1. Minimum System Requirements

If you want to boot Singularity onto a physical PC, you need a PC with at least 512MB of RAM and a

Pentium II or later processor. If you want to pursue this, please contact singrdkq@microsoft.com for

more information.

5.2. Network Boot

The PC needs a PXE enabled network card with the PXE enabled in the BIOS boot configuration.

You‟ll also need to record the MAC address of the PC. Typically the MAC address is displayed as a

12 hex digit (6 byte) number during the PXE boot. Alternatively, the MAC address can be detected

by looking PXE requests on the output of the bootd.exe.

In addition to PC hardware, you will need complete network access between your boot server

(running bootd.exe) and your client PC. If your boot server is part of a Windows security domain,

your server‟s IPSec policy will need to be changed or it will refuse to communicate with your client

PC on UDP port 4011 which is required for the PXE boot.

The DetectIpsecPolicy.cmd command in base\build will display the current IPSec policy

for a machine. To act as a boot server, the IPSec policy should be “SecNet Request Security” and not

“SecNet Require Security”.

Once your network is configured properly, copy the file build\boothw.cmd and open the new

copy in an editor. The option /m:XX-XX-XX-XX-XX-XX describes the MAC address of your

machine. Set the MAC address to the value you recorded earlier.

At this point, start the kernel debugger and change its configuration to use a direct serial cable instead

of a named pipe:

Then execute your copy of boothw.cmd, and boot the client PC.

mailto:singrdkq@microsoft.com

S I N G U L A R I T Y

Microsoft Confidential 10 20-Oct-2008

Firewire debug requires passing a boot option that can only be done for network boot (boothw.cmd

/dhcp /c:DBG=0) and then invoking boottest.cmd /1394.

5.3. Cd-Rom Boot

The build process creates an ISO image of the built OS. MSBuild emits the name of the ISO in the

last stages of a successful build. The line starts with the string “CD-ROM image:”.

Using an ISO recording tool, such as cdburn.exe, you may now burn this image to a disc and use

it to boot your PC. Alternatively, you may capture this image directly in Virtual PC to boot from it

instead of a network device.

6. Stages of the Boot Process

The Singularity boot goes through five distinct phases:

1. 16-bit Boot Loader (singldr.cpp and singldr0.asm in Singldr). The 16-bit boot loader is

loaded into the target machine by PXE or a boot sector. The 16-bit boot loader first requests the

boot sequence file (Singularity\Singboot.ini), and then parses it to determine the

filenames comprising the remainder of the boot image. The first file must be the Singularity

minidump image (Kernel.dmp). After the 16-bit boot loader successfully loads all files listed in

Singboot.ini, it gathers configuration information into the bootinfo block, disables

interrupts, enables the MMU, and transfers control and a pointer to the bootinfo block to the

32-bit boot loader. On the x86-PC architecture, the 16-bit boot loader is the only code to interact
with BIOS and the only code to allocate memory from the low 1MB of the address space.

2. 32-bit Boot Loader (undump.cpp in pxe.com). The 32-bit boot loader copies the various

components of the minidump image to the virtual addresses specified within the image. The 32-

S I N G U L A R I T Y

Microsoft Confidential 11 20-Oct-2008

bit boot loader then passes control to the first thread listed in the minidump. By convention, the
first minidump thread points to the HAL entry point.

3. Hardware Adaptation Layer (HAL) (Kernel\Native\hal.cpp). The HAL initializes a base

interrupt vector for early debugging and transfers control to the Kernel at Kernel.Main in

Kernel.cs.

4. The Singularity Kernel (Kernel\...). The kernel initializes the managed code runtime,

performs the initial inventory of hardware devices and starts the first device drivers, and then
starts the shell process.

5. The Shell (Applications\Shell\Shell.sg). The Singularity shell includes a command line

interpreter and a handful of statically linked test programs. You can list the programs by typing

“help” at the prompt.

S I N G U L A R I T Y

Microsoft Confidential 12 20-Oct-2008

7. Debugging Singularity

7.1. Starting the Kernel Debugger

There are two kernel debuggers: KD is a kernel-mode only console based debugger and WinDbg is a

graphical user-mode and kernel-mode debugger. WinDbg can be conveniently invoked by the script

dbg.cmd in the build directory. The script sets up the source code, symbols, and Singularity

specific debugger extensions, and then invokes WinDbg. See section 4.2 for command line syntax.

S I N G U L A R I T Y

Microsoft Confidential 13 20-Oct-2008

7.2. How the debugger works

The kernel debugger communicates with a stub in the Singularity HAL via a serial port protocol. The

default stub is wired to communicate using com2 at 115200 bps. In the most common case, where

Singularity is run in a Virtual PC, the com2 port on the Virtual PC is connected to a named pipe on

the host OS, \\.\pipe\kd.

The kernel-mode debugging protocol supported by KD and WinDbg stems from the development of

Windows. For Singularity, the appropriate data structures are constructed in the debugger stub

(halkd.cpp) to make Singularity appear like NT. The Bartok compiler generates the appropriate

symbols so the debugger is able to step through Sing# and C# code as if it were C or C++.

7.3. Entering the Debugger

The system maybe broken into at any time by pressing the break button on the WinDbg panel.

Within kernel code, the debugger may be entered by calling DebugStub.Break(). And from user

code using ,System.Diagnostics.Debug.Break().

7.4. Useful Debugger Commands

The basic debugger buttons and windows should be familiar to anyone who has used an MS debugger

before. Rather than cover the basic buttons and panes, we present a list of techniques that we‟ve

found useful working on Singularity.

7.4.1. Evaluate C++ expression (??)

The ?? command evaluates a C++ expression. This provides a fast way to evaluate an expression

from the command prompt (kd>). C# expressions can be evaluated by transmogrifying them into

C++ expressions (replace . with :: when describing members).

file:\\.\pipe\kd

S I N G U L A R I T Y

Microsoft Confidential 14 20-Oct-2008

7.4.2. Print a static member variable

Static member variables do not show up when debugging sessions, but can be accessed through the

command-line with the ?? command. For instance to print the value of the static variable done in

the shell, the interaction would be:

kd> ?? shell!Shell::done

bool false

7.4.3. Print a string

The debugger is not aware of the C# string representation, but can be displayed in the debugger.

Suppose a string object called message is used in a function. The interaction to display it is:

kd> ?? *message

class String

 { [13] "Hello World!" }

 +0x000 __VFN_table : 0x3d81ec5c

 +0x004 m_arrayLength : 13

 +0x008 m_stringLength : 12

 +0x00c m_firstChar : 72 'H'

The deference operator (*) is required because the string object message is actually a pointer to an

object instance.

7.4.4. Print a member of an array

Arrays are represented as objects containing an overall_length field and a values field that

the array elements. The first 3 values are usually visible from the debugger windows. Further values

may be viewed with ??. Suppose a method takes an array of integers called numbers, then

elements of the array may viewed as follows:

kd> ?? numbers

class Int32[] * 0x3d539094

kd> ?? *numbers

class Int32[]

 +0x004 overall_length : 5

 +0x008 values : [3] 1

kd> ?? numbers->values[4]

int 7

7.4.5. Copy the stack to clipboard

When problems arise in pieces of code that you are not familiar with it is often handy to send a stack

trace to the author of the code. The call stack window has an icon next to the close window

button . Pressing this button presents the user with a list of options and among these is the option

to copy the stack to clipboard. When sending stack traces it is generally helpful to have all of the

options enabled (Raw args, Func info, Source, Addrs …).

Similar functionality can be achieved via the interactive prompt using k* commands. kv is

equivalent to all options enabled in the WinDbg GUI.

7.4.6. Catch Exceptions in Debugger

The debugger can catch C# exceptions as they are raised. To do this, navigate from the main window

through Debug->Event Filters and select “Visual C++ exception”. Change the Execution option to

“enabled”. The next exception thrown will cause the debugger to be entered into.

S I N G U L A R I T Y

Microsoft Confidential 15 20-Oct-2008

If you need to catch an exception that is thrown during the kernel initialization process then edit

dbg.cmd and remove the –c “g” arguments supplied to WinDbg. This will cause the debugger to

be entered into early during the kernel initialization. An event filter or breakpoint can be added before

resuming by pressing the go button (or typing „g‟ at the interactive command prompt).

7.4.7. Locate source lines and files from addresses

To locate a source file or address from an instruction pointer value use the lsa command at the

command prompt. To locate the file associated with an instruction pointer value, use the lsc

command.

7.4.8. Step source line and step instruction at a time

When stepping through code with the debugger it is possible to step on C# instruction at a time by

selecting source mode on the main toolbar . It is possible to step a machine instruction at a time by

selecting instruction mode on the main toolbar . These commands are also available through the

interactive command prompt as l+t and l-t respectively.

7.4.9. Multiprocessor commands

When the debugger is entered on multiprocessor systems, the command prompt changes to indicate

the current processor number, ie:

0: kd>

The current processor may be switch using ~<cpuNumber> , where cpuNumber ranges from 0 to

the number of processors in the system minus one.

7.5. Singularity Debugger Extensions

The debugger framework supports extensions. The extension mechanism primarily exists to allow

groups within product groups to add functionality to the debugger through plugins. Extension

commands are prefixed with an exclamation character (!). The debugger is unaware of extension

commands and they must be entered at the interactive kd prompt in WinDbg.

7.5.1. Extensions Help (!help)

The !help command displays a list of the available extensions with arguments.

7.5.2. Inspect object (!object)

Attempts to cast a memory location into an object and display information about the object.

7.5.3. List threads (!threads)

Lists the threads present in the system. When invoked with –s argument, the stack associated with

each thread is also shown.

7.5.4. Switch thread (!thread)

The !thread command switches the debugger context to the selected thread. This allows the user

to debug specific threads from within the debugger.

7.5.5. View processes (!procs)

Lists the process objects present in the system.

S I N G U L A R I T Y

Microsoft Confidential 16 20-Oct-2008

7.5.6. View log entries (!log)

Singularity provides a fast and lightweight logging facility for application and kernel events. A

portion of memory is used as a circular buffer for logging event entries. Each entry includes the event

type, the time in CPU cycles, the thread id, a descriptive tag, and a user supplied message. Entries in

the log are retrieved in a LIFO manner using !log.

Invoking the log command with –h displays the output and filtering options for the log extension.

The programmer interface to the log is contained under Kernel\Singularity\Tracing.cs.

7.6. Miscellaneous Debugger Tips

7.6.1. The compiler optimized the code away

The Bartok compiler performs whole program optimization optimization. As a result portions of

code, variables, whole methods, may be optimized away. The Bartok command line argument

/minopt will greatly reduce the number of optimizations performed. Setting

BARTOK_FLAGS=/minopt at the top of the relevant Makefile will disable optimization for a

particular project component. Alternatively, setting the environment variable BARTOK_FLAGS will

have the same effect. The component directory will require a clean build for the change to have an

effect.

S I N G U L A R I T Y

Microsoft Confidential 17 20-Oct-2008

8. Troubleshooting

There are a few common failures modes when building and running Singularity:

 Symptom: Build process displays “out of memory” on a cl16.exe step.

o Possible cause: Environment variables are too long for cl16.exe.

o Possible solution: Shorten environment variable definitions before calling

setenv.cmd. Common culprits are PATH and INCLUDE.

 Symptom: Build process fails when running sn.exe with the error message, “Failed to

generate strong name key pair. Access is denied.”

o Possible cause: User does not have permission to host keys.

o Possible solution: Add user rights to access the files under:

C:\Documents and Settings\All Users\

 Application Data\Microsoft\Crypto\RSA\MachineKeys

 Symptom: Build fails with the message, “fatal error CS0014: Required

file 'alink.dll' could not be found”.

o Possible cause: The C# compiler requires the .NET Framework version 2.0 which

is not installed.

o Possible solution: Install the .NET Framework version 2.0 or higher. For more

information see, http://msdn.microsoft.com/netframework/technologyinfo/-

howtoget/default.aspx.

 Symptom: The Virtual PC displays the message, “Reboot and Select proper

Boot device”.

o Possible cause: The PXE boot floppy has been removed from Virtual PC.

o Possible solution: Select “Capture Floppy Disk Image…” from “Floppy” menu,

then select the PXE boot floppy image base\boot\pxeboot.vfd.

 Symptom: The Virtual PC waits at the “Microsoft Windows Remote Installation Boot

Floppy” screen for a really long time.

o Possible cause: Virtual PC window isn‟t getting enough cycles for the code‟s

CPU-bound timeout delay.

o Possible solution: Make the Virtual PC the foreground window.

 Symptom: TFTP server is not responding when using Virtual PC.

o Possible cause: Virtual PC networking setting has not been set.

o Possible solution: Follow the directions above under “Create a Virtual PC.”

o Possible cause: The PXE server is configured with an incorrect MAC address for

the Virtual PC. The default MAC address is 00-03-ff-fe-ff-ff, but

http://msdn.microsoft.com/%1fnetframework/%1ftechnologyinfo/%1fhowtoget/%1fdefault.aspx
http://msdn.microsoft.com/%1fnetframework/%1ftechnologyinfo/%1fhowtoget/%1fdefault.aspx

S I N G U L A R I T Y

Microsoft Confidential 18 20-Oct-2008

occasionally, Virtual PC will assign a different MAC address. The MAC address

is stored in the .vmc file.

o Possible solution: Copy the MAC address for the Virtual PC, in the line “Node:

0003FF9150D9” on the RIS boot screen, to the boottest.cmd file.

 Symptom: PXE boot floppy displays “No reply from a server.”

o Possible cause: The boot server isn‟t started.

o Possible solution: Type “boottest.cmd” in the Singularity command shell.

 Symptom: PXE boot floppy displays “No reply from a server” and boottest.cmd

does not show any requests from virtual PC host MAC address.

o Possible cause: The Windows firewall is blocking DHCP and TFTP ports.

o Possible solution: Open firewall settings and enable ports 67 (DHCP) and 69

(TFTP).

 Symptom: Bootd.exe displays, “WSAEADDRINUSE (10048) Address already

in use,” error and Singularity doesn‟t boot because it can‟t find a boot server.

o Possible cause: Internet connection sharing is enabled on your computer.

o How to check: Type “ipconfig /all” and look for “IP Routing

Enabled....: Yes” in first block of configuration settings.

o Possible solution: Disable internet connection sharing in network properties.

